
6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

1

Overview of POJO programming

A simpler, faster way to build long-lived applications

by

Chris Richardson
chris@chrisrichardson.net

http://www.chrisrichardson.net

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

2

About Chris…
� Grew up in England
� Live in Oakland
� Twenty years of software

development experience
� Building object-oriented

software since 1986
� Using Java since 1996
� Using J2EE since 1999

� Author of POJOs in Action
� Run a consulting company

that helps organizations
build better software
faster

� Chair of the eBIG Java SIG
in Oakland (www.ebig.org)

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

3

Overview

� POJOs + lightweight frameworks:
� Simplify development
� Accelerate development
� Make applications immune to the

volatility of enterprise Java technology

� Focus on the “backend” frameworks:
� Business tier
� Database access tier

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

4

Agenda

� The trouble with traditional
enterprise Java frameworks

� Overview of POJOs
� Assembling POJO applications with

dependency injection
� Persisting POJOs with Hibernate
� Making POJOs transactional with

Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

5

Classic EJB architecture example

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

6

Problems with intertwined business
logic and infrastructure

� Upgrading to new, better version of
infrastructure framework is
difficult/impossible:
� Enterprise Java (1998-2006):
� Incompatible standards: EJB 1, EJB 2, EJB 3
� Many persistence options: EJB CMP 1/2,

Hibernate 1/2/3, JDO 1/2, EJB 3 persistence
� Makes development more difficult
� Forced to think about business logic +

infrastructure concerns simultaneously
� Developers need to know both

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

7

…problems

� Makes testing more difficult
� Must deploy code/tests in application

server
� Slows down the edit-compile-debug cycle

� EJB 2 prevented OO development
� EJB application servers are
� Complex
� Expensive (some)

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

8

EJB as a cult
� In 1999 I readily embraced EJBs and its development

rituals:
� writing DTOs and unused lifecycle methods
� Waiting for EJBs to deploy

� According to http://en.wikipedia.org/wiki/Cult

“a cult is a relatively small and cohesive group of people
devoted to beliefs or practices that the surrounding
culture or society considers to be far outside the
mainstream”

� But there is a better way….

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

9

Agenda

� The trouble with traditional
enterprise Java frameworks

¾ Overview of POJOs
� Assembling POJO applications with

dependency injection
� Persisting POJOs with Hibernate
� Making POJOs transactional with

Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

10

POJO = Plain Old Java Object

� Java objects that don't implement
any special interfaces or (perhaps)
call infrastructure APIs

� Coined by Martin Fowler, Rebecca
Parsons, and Josh MacKenzie to make
them sound just as exciting as
JavaBeans, Enterprise JavaBeans

� Simple idea with surprising benefits

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

11

POJO application design

POJO facade

Domain model Database
access

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

12

POJO code example

� Simple Java classes
� No lookup code – uses dependency

injection instead

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

13

But POJOs are insufficient…
⇒ Lightweight frameworks

� Endow POJOs with enterprise features
� Object/relational mapping framework:
� Persists POJOs
� JDO, Hibernate, JPA, …

� Spring framework:
� Popular open-source framework
� Declarative transaction management
� Dependency injection
� Remoting, security, …

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

14

Key point: non-invasive frameworks

� Provide services without the application:
� Implementing interfaces
� Calling APIs

� Configured using metadata:
� XML
� Java 5 annotations

� POJOs + non-invasive frameworks ⇒
simple, faster development of applications
that are immune to infrastructure changes

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

15

Deployment options
� Web container-only server
� Tomcat or Jetty
� Simple yet sufficient for many applications

� Full-blown server
� WebLogic, JBoss, WebSphere
� Richer set of features
� Enhanced manageability and availability
� JTA
� JMS
� …

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

16

Benefits of using POJOs

� Separation of concerns
� Business logic is decoupled from infrastructure
� Switch frameworks or upgrade more easily
� Not everybody has to be an infrastructure framework expert

� Simpler development
� Think about one thing at a time
� Business logic, persistence, transaction management….

� Faster development
� Testing without an application server (or a database)
� No deployment to slow you down

� More maintainable
� Modular object-oriented code
� Loosely coupled design

� Simpler, perhaps cheaper deployment
� Deploy in a web-container only server

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

17

Drawbacks of POJOs…

� …none except that lightweight
frameworks have their limitations

� Use EJBs if you need:
� Distributed transactions initiated by a

remote client
� Some application server-specific features
� …

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

18

Agenda

� The trouble with traditional
enterprise Java frameworks

� Overview of POJOs
¾ Assembling POJO applications

with dependency injection
� Persisting POJOs with Hibernate
� Making POJOs transactional with

Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

19

Dependency injection
� Application components depend

on:
� One another
� Infrastructure components

� Using JNDI or the new operator:
� Introduces coupling
� Complexity

� Solution:
� Pass dependencies to a

component
� Setter injection
� Constructor injection

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

20

Dependency injection example

public class MoneyTransferServiceImpl
…

public MoneyTransferServiceImpl(
AccountRepository

accountRepository, …)
{

this.accountRepository =
accountRepository;

…
}

public class HibernateAccountRepository
implements AccountRepository {

…
}

�You can implement dependency injection by hand but ….

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

21

Spring lightweight container

� Lightweight container = sophisticated
factory for creating objects

� Spring bean = object created and
managed by Spring

� You write XML that specifies how to:
� Create objects
� Initialize them using dependency injection

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

22

Spring code example
public class MoneyTransferServiceImpl
…

public MoneyTransferServiceImpl(
AccountRepository

accountRepository, …)
{

this.accountRepository =
accountRepository;

…
}

<bean name="MoneyTransferService"
class="MoneyTransferServiceImpl">

<constructor-arg ref="AccountRepository"/>
…

</bean>

<bean name="AccountRepository"
class="HibernateAccountRepository">

…
</bean>

public class HibernateAccountRepository
implements AccountRepository {

…
}

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

23

Spring 2 – dependency injection
into entities
� Domain model entities

need to access
repositories/DAOs/etc

� But they are created by
the application or by
Hibernate – not Spring

� Passing repositories as
method parameters from
services clutters the code

� Spring 2 provides
AspectJ-based
dependency injection
into entities

� Constructors
automatically invoke
Spring

@Configurable("pendingOrder")
public class PendingOrder {

private RestaurantRepository restaurantRepository;

public void
setRestaurantRepository(RestaurantRepository

restaurantRepository) {
this.restaurantRepository =

restaurantRepository;
}

<aop:spring-configured />

<bean id="pendingOrder" lazy-init="true">
<property name="restaurantRepository"

ref="RestaurantRepositoryImpl"
/>

</bean>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

24

Benefits of dependency injection

� Simplifies code
� No calls to JNDI

� Decouples components from:
� One another
� Infrastructure

� Simplifies testing
� Pass in a mock/stub during testing

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

25

Mock object code example

� Test the MoneyTransferServiceImpl
without calling the real
AccountRepository

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

26

Agenda

� The trouble with traditional
enterprise Java frameworks

� Overview of POJOs
� Assembling POJO applications with

dependency injection
¾ Persisting POJOs with Hibernate
� Making POJOs transactional with

Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

27

POJO persistence

� Use an object/relational framework:
� Metadata maps the domain model to the

database schema
� ORM framework generates SQL statements

� Hibernate
� Very popular open-source project

� JDO
� Standard from Sun – JSR 12 and JSR 243
� Multiple implementations: Kodo JDO, JPOX

� EJB 3/Java Persistence API (JPA)

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

28

Hibernate: code example

� Provides transparent persistence
� Pieces:
� Account
� HibernateBankingExample.hbm.xml
� HibernateAccountPersistenceTests
� HibernateAccountRepository
� HibernateAccountRepositoryTests
� Spring beans

� Only the repositories/DAOs call persistence
framework APIs

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

29

ORM framework features 1
� Declarative mapping

� Map classes to tables; fields to columns; relationships to foreign
keys and join tables

� CRUD API
� E.g. Hibernate Session, JPA EntityManager

� Query language
� Retrieve objects satisfying search criteria

� Transaction management
� Manual transaction management
� Rarely call directly – used by Spring

� Detached objects
� Detach persistent objects from the DB
� Eliminates use of DTOs
� Supports edit-style use cases

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

30

ORM framework features 2
� Lazy loading

� Provide the illusion that objects are in memory
� But loading all objects would be inefficient
⇒ load an object when it is first accessed

� Eager loading
� Loading objects one at a time can be inefficient
� ⇒ load multiple objects per-select statement

� Caching
� Database often the performance bottleneck
� ⇒ cache objects in memory whenever you can
� Easy for readonly objects
� Optimistic locking and cache invalidation for changing

objects

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

31

O/R mapping framework benefits
� Improved productivity

� High-level object-oriented API
� Less Java code to write
� No SQL to write

� Improved performance
� Sophisticated caching
� Lazy loading
� Eager loading

� Improved maintainability
� A lot less code to write

� Improved portability
� ORM framework generates database-specific SQL for you

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

32

When and when not to use an
ORM framework
� Use when the application:
� Reads a few objects, modifies them, and writes

them back
� Doesn’t use stored procedures (much)

� Don’t use when:
� Simple data retrieval ⇒ no need for objects
� Lots of stored procedures ⇒ nothing to map to
� Relational-style bulk updates ⇒ let the database

do that
� Some database-specific features ⇒ not

supported by ORM framework

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

33

Agenda

� The trouble with traditional
enterprise Java frameworks

� Overview of POJOs
� Assembling POJO applications with

dependency injection
� Persisting POJOs with Hibernate
¾ Making POJOs transactional with

Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

34

Making POJOs transactional

� EJB 2 container-managed
transactions are great

� Spring provides declarative
transactions for POJOs

� Similar to CM transactions but
� Runs outside of an application server
� More flexible exception handling

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

35

Spring AOP
� AOP enables the modular implementation of crosscutting

concerns
� Spring AOP = simple, effective AOP implementation
� Lightweight container can wrap objects with proxies
� Proxy executes extra code:

� Before original method
� After original method
� Instead of…

� Spring uses proxies for:
� transaction management
� security
� tracing
� …

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

36

Spring TransactionInterceptor

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

37

Spring code example
<bean

name="AccountManagementFacade“
class="AccountManagementFacadeImpl">
…

</bean>

<bean id="transactionProxyCreator“
class=“...BeanNameAutoProxyCreator">
<property name="beanNames">

<list>
<idref

bean="AccountManagementFacade"/>
</list>

</property>
<property name="interceptorNames">

<list>
<idref

bean="BankingTransactionInterceptor"/>
</list>

</property>
</bean>

<bean id="myTransactionManager"
class="HibernateTransactionManager">

…
</bean>

<bean
id="BankingTransactionInterceptor"
class="TransactionInterceptor">
<property name="transactionManager"

ref="myTransactionManager"/>
</bean>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

38

Spring 2 – simplified XML
<bean

name="AccountManagementFacade“
class="AccountManagementFacadeImpl">
…

</bean>

<aop:config>
<aop:advisor
pointcut="execution(* *..*Facade.*(..))"

advice-ref="txAdvice"/>
</aop:config>

<bean id="transactionManager"

class="HibernateTransactionManager">
…
</bean>

<tx:advice id="txAdvice">
<tx:attributes>

<tx:method name="*"/>
</tx:attributes>

</tx:advice>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

39

Spring remoting
� Remoting

� Spring HTTP
� Hessian/Burlap
� RMI
� …

� Server uses a
<Xyz>Exporter bean
� Service to expose
� Interface to expose

� Client uses a
<Xyz>ProxyFactoryBean
� URL to remote service

<bean name="/accountManagement"
class="org.springframework.remoting.httpi
nvoker.
HttpInvokerServiceExporter">

<property name="service"
ref="TransferFacade"/>

<property name="serviceInterface“
value="net.chrisrichardson…TransferFacade“

/>
</bean>

<bean id="httpInvokerProxy"
class="org.springframework.remoting.httpi
nvoker.

HttpInvokerProxyFactoryBean">
<property name="serviceUrl"

value="http://somehost:8080/accountManage
ment"/>

<property name="serviceInterface“
value="net.chrisrichardson…TransferFacade“

/>
</bean>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

40

Spring Security
� Acegi Security

� Open source project
� Extension to Spring

� MethodSecurityInterceptor
� Verifies that caller is

authorized
� Invoke method
� Access instances

<bean id=“transferSecurity"
class="org.acegisecurity.inter
cept.method.aopalliance.

MethodSecurityInterceptor">
…
<property

name="objectDefinitionSource">
<value>

net.chrisrichardson…
TransferFacade.*=

ROLE_CUSTOMER, ROLE_CSR
</value>

</property>

</bean>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

41

Deploying a Spring application
� Often packaged as a

WAR
� Web.xml lists bean

definition files
� ServletContextListener

creates Spring bean
factory

� Web tier is either:
� Injected with Spring

beans
� Calls getBean()

<web-app>

<context-param>
<param-name>contextConfigLocation
</param-name>

<param-value>
/beans1.xml
/beans2.xml
</param-value>

</context-param>

<listener>
<listener-class>

org.springframework.web.context.C
ontextLoaderListener

</listener-class>
</listener>

..

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

42

Summary

� Simplify development
� Accelerate development
� Improve maintainability
� Increase immunity to

rapidly evolving
infrastructure
frameworks

POJOs

+ =

Non-invasive
frameworks

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

43

For more information
� Buy my book ☺

� Send email:
chris@chrisrichardson.net

� Visit my website:

http://www.chrisrichardson.net

� Please hand in your
session evaluations

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

44

Extra slides

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

45

Thoughts about EJB 3 and POJOs
☺ Better than EJB2
☺ Supports POJOs
☺ Reasonable ORM
☺ Entity beans = JPA
☺ Annotations are

concise
☺ Has dependency

injection
☺ It’s a standard

/ Less powerful than
Spring, e.g. DI relies
on JNDI

/ Less powerful than
Hibernate, e.g.
List<String>

/ Session beans/MDBs
must be deployed

/ Complexity of EJB
lurking within

0 Annotations couple
your code to EJB3

1 EJB’s poor track record
as a standard

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

46

Using Spring with EJBs

� Simplify EJB client code with Spring
� Spring encapsulates JNDI lookup
� Client gets EJB reference from Spring
� Better: Client is injected with EJB reference

� Move business logic into Spring beans
� Session EJBs delegate to Spring beans
� Use Spring dependency injection
� Simpler code, easier testing

� Simplify DAOs with Spring JDBC
� Eliminates error-prone boilerplate code

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

47

Migrating to POJOs – part 1

� 2 year old application:
� Session EJBs
� Entity Bean-based domain model
� Some JDBC DAOs
� Beginning development of version 2

� Replaced entity beans with Hibernate:
� WAS vs. WLS portability
� Test business logic without persistence
� Test persistence without a server
� A much richer domain model

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

48

Migrating to POJOs – part 2

� Used Spring beans for V2 code
� Incrementally replaced V1 session

beans with Spring beans when:
� Enhancing it
� V2 code needed to call V1 code

� End result:
� Richer domain model
� Faster development
� V2 code was deployable as a web app.

