
8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

1

POJOs to the rescue

Easier and faster development with POJOs and lightweight
frameworks

by

Chris Richardson
cer@acm.org

http://chris-richardson.blog-city.com

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

2

Who am I?
Twenty years of software
development experience

Building object-oriented
software since 1986
Developing with Java
since 1996

Author of POJOs in
Action
Run a consulting
company that helps
organizations develop
software more effectively

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

3

Overview

EJBs really are (mostly) a bad idea
POJOs and lightweight frameworks make
development easier and faster

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

4

Agenda

Overview of POJOs and lightweight
frameworks
The strengths and weaknesses of
EJBs
Developing applications with POJOs
Example of a POJO design
Where does EJB 3 fit in?
Migrating to POJOs

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

5

POJO = Plain Old Java Object

Java objects that don't implement
any special interfaces
Coined by Fowler to make it sound
just as exciting as JavaBeans,
Enterprise JavaBeans
Simple idea with surprising benefits
But POJOs are insufficient…

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

6

Lightweight frameworks
Endow POJOs with enterprise features
Object/relational mapping frameworks

Make POJOs persistence
JDO
Hibernate

Spring framework
Popular open-source framework for simplifying J2EE
development
Lightweight container for POJOs
Provides declarative transactions for POJOs
Makes it easier to use JDO and Hibernate

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

7

Agenda

Overview of POJOs and lightweight
frameworks
The strengths and weaknesses of
EJBs
Developing applications with POJOs
Example of a POJO design
Where does EJB 3 fit in?
Migrating to POJOs

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

8

EJB unique strengths

Truly distributed applications where EJBs
participate in transactions initiated by a
remote client
Messaging-oriented applications that can
benefit from Message-driven beans
Its a standard
But there are better ways to have
declarative transactions and security

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

9

EJBs weaknesses

The deployment ritual
Excessive complexity
Writing code that does nothing
Lack of support for OO development

⇒ Developing enterprise Java
applications more difficult that it
should be

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

10

Classic EJB architecture example

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

11

Look at the code

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

12

Problem #1: Lots of procedural code
This a procedural design

Business logic is concentrated in the EJB

Problems with procedural code
Doesn't handle complexity

Session beans contain large amounts of code
Difficult to extend

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

13

Why procedural?
Its easy – just add more code to a session bean
Encouraged by the J2EE literature, which
emphasizes EJBs

EJB developers just love to talk about their beans
Session beans and Message-Driven beans play a central
role but are procedural components

Lack of support for persisting a domain model:
Entity beans are broken
Doing it with JDBC is too difficult

⇒ EJBs make procedural programming easy and object-
oriented programming difficult

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

14

My break from object-oriented
programming

1986-1999 – Object-oriented
(CLOS/C++/Java)
1999-2002 – Procedural (EJB +
JDBC)
2002-2004 - Simple object-oriented
(EJB + EJB 2 CMP)
2004 - Object-oriented (Spring
Hibernate/JDO)

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

15

Problem #2 – JDBC code

EJB 2 entity beans
Bad reputation
Lots of limitations

DAOs:
JDBC code
Handwritten SQL difficult to maintain
Not very portable

EJB applications often contain a lot of it

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

16

Problem #3 - Code is coupled to the
server environment

EJBs are server-side components
DAOs that use JNDI must run in the server

⇒ Long edit-compile-debug cycles:
Hot code replacement helps but it has its limitations
Once you make a non-trivial change you have to
restart the server (2 minutes)

⇒ Testing is more difficult:
Remote interfaces
Local interfaces with Cactus

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

17

Problem #4 - complexity

Lots of code that does nothing
ejbActivate()/Passivate() methods for stateless session
beans

XML deployment descriptors
Or XDoclet comments

General development time complexity
Running XDoclet
Server configuration
IDE setup

⇒ All this extra stuff just to run some code

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

18

EJB as a cult
According to
http://en.wikipedia.org/wiki/Cult

“a cult is a relatively small and cohesive
group of people devoted to beliefs or
practices that the surrounding culture or
society considers to be far outside the
mainstream”

In 1999 I readily embraced EJBs and
thought they were great

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

19

Once you escape the cult you
realize…

There is no reason why writing server-side
code should be so different
Development is slow
Excessive complexity
Lacking key features

⇒ Use EJBs only for
Distributed transactions
Message-driven beans

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

20

Agenda

Overview of POJOs and lightweight
frameworks
The strengths and weaknesses of
EJBs
Developing applications with POJOs
Example of a POJO design
Where does EJB 3 fit in?
Migrating to POJOs

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

21

Developing with POJOs

How I escaped
The characteristics of a POJO design
Benefits of a POJO design

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

22

Entity Beans ⇒ POJOs + Hibernate

Classic J2EE architecture
Session beans for declarative transactions/security
Entity beans persisted a simple domain model
DAOs for queries that couldn't use Entity beans
Ran on WebLogic

But
Jumped through hoops to persist a domain model
Long edit-compile-debug cycles

The final straw was when we needed to support WAS and WLS
Non-standard CMP

Motivated us to migrate to Hibernate
Provided portability
Simplified development of the persistence layer
Enabled us to develop a very elaborate domain model

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

23

Session beans ⇒ POJOs + Spring

Spent three days at TSSJS 2004 being indoctrinated:
Spring
Dependency injection
AOP

Use POJO facades instead of session beans
Spring provides declarative transaction management

Development went so much faster
Test code outside of the server
Test using Jetty, which starts up in a couple of seconds

Spring+Hibernate totally transformed the development
experience
This was a real Tivo moment

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

24

EJB design vs. POJO design

Dependency injectionExplicit JNDI lookupsApplication assembly

Spring frameworkEJB container-managed
transactions

Transaction management

Business objectsDTOsReturning data to the
presentation tier

Persistence framework JDBC/SQL or Entity beansDatabase access

POJOsEJB-basedImplementation

Object-oriented designProcedural-style business logicOrganization

POJO designEJB designDesign decision

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

25

Benefits of using POJOs

Simpler development
Test without an application server
Business logic and persistence are separate

Faster development
Test without deploying
Easier testing

More maintainable
Modular object-oriented code
No handwritten SQL
Loosely coupled design

Decouple technologies from core business logic

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

26

Agenda

Overview of POJOs and lightweight
frameworks
The strengths and weaknesses of
EJBs
Developing applications with POJOs
Example of a POJO design
Where does EJB 3 fit in?
Migrating to POJOs

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

27

POJO design

POJO facade

Domain model

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

28

Banking domain model

Business
logic

Database
access code

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

29

Benefits of a domain model

Easier to understand and maintain
More modular
Some classes mirror the real world

Easier to test
Because of the modularity

Easier to extend
e.g. Strategy and Template method design
patterns

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

30

Drawbacks of a domain model

Need OO design skills
Requires an object/relational mapping
framework
Not suitable for some applications

Bulk updates
Functions that are best performed by the
database

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

31

Implement using POJOs

Use the features of the Java language
Inheritance
Recursive calls
Fine-grained objects

Things that EJB prevented you from using

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

32

Walk through the domain model code

Look at classes
Run some tests

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

33

Benefits of POJOs

Easier development
Less restrictions
None of the complexity of EJBs
Develop and test without worrying about the
database

Faster development
No deployment

Improved portability
Not tied to a particular framework

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

34

Use an object/relational mapping
framework

Map the domain model to the database schema
Hibernate

Very popular open-source project

JDO
Standard from Sun – JSR 12 and JSR 243
Multiple implementations
Commercial:

Kodo JDO

Open-source
Versant
JPOX

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

35

ORM framework features

Declarative mapping
CRUD API
Query language
Transaction management
Lazy and eager loading
Caching
Detached objects

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

36

ORM benefits
Improved productivity

High-level object-oriented API
No SQL to write

Improved performance
Sophisticated caching
Lazy loading
Eager loading

Improved maintainability
A lot less code to write

Improved portability
ORM framework generates database-specific SQL for you

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

37

ORM Drawbacks
Less control over the SQL

But sometimes you need to use database specific features

Object/relational mapping limitations
Weird object models
Weird database schemas

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

38

When and when not to use an
ORM framework

Use when the application:
Reads a few objects, modifies them, and writes
them back
Doesn’t use stored procedures (much)

Don’t use when:
Simple data retrieval (no need for objects)
Lots of stored procedures
Lots of updates
Relational style

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

39

Encapsulating calls with repositories
Insulates the rest of the
application from the ORM
framework
Enables the domain model to be
tested without the database
Makes switching persistence
mechanisms relatively easy

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

40

Look at the example code
Object/relational mapping
Repositories
Run some tests

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

41

POJO facade
Similar to an (EJB)
Session Facade
Handles requests from
the presentation tier
Gathers data that the
presentation tier requires
Delegates to the domain
model
Using Spring for
Transaction management
Returns detached objects
instead of DTOs
Using dependency
injection instead of JNDI
lookups

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

42

Look at the example facade code

AccountManagementFacade
AccountManagementFacadeImpl
Run some tests

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

43

Managing transactions with Spring
Declarative transactions is one of main
motivations for using EJBs

Simplifies the code
Less error-prone

POJOs need an equivalent mechanism
⇒ Spring framework

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

44

What is the Spring framework?

It’s a framework that makes it easier to develop
J2EE application
Lots of features

Lightweight container
ORM utility classes such as HibernateTemplate
...
MVC-based web framework

And, declarative transaction management:
Write a small amount of XML
Supports Java 5 annotations also

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

45

Spring lightweight container

Lightweight container = sophisticated factory for creating
objects
Spring bean = object created and managed by Spring
You write XML that specifies how to create and initialize the
objects:

<bean name="AccountManagementFacade"
class="AccountManagementFacadeImpl">

<constructor-arg ref="AccountRepository"/>
<constructor-arg ref="MoneyTransferService"/>

</bean>

Application calls:
beanFactory.getBean(“AccountManagementFacade”,
AccountManagementFacade.class)

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

46

Spring AOP proxies

Spring's lightweight container can do more
than simply instantiate objects
It can wrap an object with a proxy a.k.a
interceptor
Proxy masquerades as the original object
Proxy executes arbitrary code before and
after method call

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

47

Spring TransactionInterceptor

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

48

Spring
PlatformTransactionManager

Used by the TransactionInterceptor
Encapsulates the transaction management APIs
Multiple implementations:

JtaTransactionManager
JTA/UserTransaction

DataSourceTransactionManager
Connection.commit()/rollback()

HibernateTransactionManager
Session.getTransaction()/
Transaction.commit()/rollback()

JdoTransactionManager
Transaction.begin()/commit()/rollback()

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

49

Look at bean definitions source code
TransferFacade
TransactionInterceptor
TransactionManager
BeanNameAutoProxyCreator

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

50

Spring AOP
AOP = Declarative mechanism for changing
the behavior of an application
Spring AOP is less powerful than other AOP
solutions such AspectJ
Much easier to use
Doesn't require its own compiler
Comes with a library of aspects for building
enterprise Java applications

Managing transactions
Managing Hibernate and JDO

You can also write your own

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

51

Using a POJO facade

Encapsulate the business logic with a
POJO facade
Using Spring for declarative
transactions
Return detached objects instead of
DTOs
Use dependency injection to access
resources and components

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

52

Replace DTOs with detached
objects

Developing DTOs is one of the more tedious aspects of
EJB development
Use detached objects instead

Instead of copying from domain object into a
DTO
Return the domain object

Hibernate
Objects automatically detached
Just load them

JDO
Explicitly call to JDO API to detach them

Tricky part:
Ensuring that enough of the object graph has been
detached

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

53

Configuring applications with
dependency injection

Avoid
JNDI lookups
Explicit instantiation

Instead, pass dependencies
Constructor arguments
Calling setters

Benefits
Loosely coupled applications
Easier testing

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

54

Look at the example facade code

AccountManagementFacade
AccountManagementFacadeImpl
Run some tests

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

55

Deployment options

Deploy as a web application
Jetty/Tomcat
JBoss/WAS/WLS is only required if

JMS
JTA
Some app. server specific feature
...

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

56

Benefits of a POJO facade

Faster and easier development
Potentially eliminates need for EJB
container

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

57

Drawbacks of a POJO facade

Compared to EJB
No support for transactions initiated by a remote
client
No equivalent to MDBs
Non-standard security, e.g. ACEGI security
Client must be able to get facade from container

Detaching objects is potentially fragile
Lack of encapsulation of domain model

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

58

POJO design - summary

Yes, you still must write some XML but its
simpler
Less code

No DTOs
No JNDI lookup code
No low-level database code

Easier to test
Outside of container
Loosely coupled code

Able to use object-oriented design

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

59

Agenda

Overview of POJOs and lightweight
frameworks
The strengths and weaknesses of
EJBs
Developing applications with POJOs
Example of a POJO design
Where does EJB 3 fit in?
Migrating to POJOs

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

60

What about EJB 3 - good news

Much better than EJB 2
EJB 3 beans are POJOs
Simplified configuration (using
annotations)
Improved persistence API
EJB 3 entity beans support J2EE and J2SE
Standardized O/R mapping
Entity beans can be detached

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

61

EJB 3 - bad news

O/R mapping weaker than Hibernate/JDO
Session beans and message-driven beans
are server-side components
Limited form of dependency injection
EJB 3 is an ease-of-use veneer on top of
an application server

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

62

EJB 3 - conclusion

In its current state you will most
likely require vendor-specific
extensions
Carefully consider whether it is worth
using
Be skeptical
No need to rejoin the cult

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

63

Agenda

Overview of POJOs and lightweight
frameworks
The strengths and weaknesses of
EJBs
Developing applications with POJOs
Example of a POJO design
Where does EJB 3 fit in?
Migrating to POJOs

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

64

Migrating an existing application

Write new code using Spring
Migrate existing code incrementally:

You cannot rewrite tens of session beans and
DAOs overnight

But sometimes new code must call old
code
Moreover, you will want to migrate old
code:

You will hate working on it

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

65

Stateless Session bean ⇒ POJO
façade

Component interface ⇒ POJO
interface
Bean class ⇒ POJO that implements
interface
EJB CMT ⇒ Spring-managed
transaction
EJB security ⇒ ACEGI security
JNDI lookup of EJB’s home ⇒
BeanFactory.getBean()

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

66

Entity beans ⇒ Hibernate
Encapsulate code that calls home interface within
repository
Entity bean class ⇒ concrete POJO
Abstract accessors ⇒ concrete accessors+fields
ejbCreate() ⇒ constructor
Add code to manage bidirectional relationships
Finders ⇒ named queries + repository method
Define O/R mapping
…

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

67

Handling connections

Handling database connections when
DAO/Repository used by old and new code
Original DAO code:

DataSource.getConnection()
Connection.close()
Connection(s) associated with JTA transaction

To ensure one JDBC connection per
transaction use

DataSourceUtils.getConnection()
DataSourceUtils.releaseConnection()

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

68

Conclusion

Use EJBs for:
Distributed transactions from remote clients
Message-driven beans

For everything else use:
POJOs, Spring

And, when you can:
Use an object-oriented design
Object/relational mapping framework

Adoption:
Write new code using POJOs/Spring/…
Incrementally migrate existing code

8/21/2005 Copyright (c) 2005 Chris
Richardson. All rights reserved.

69

For more information

Email:
cer@acm.org
Blog:

http://chris-
richardson.blog-
city.com

My book (Oct05):
POJOs in Action

